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a beta-plane are investigated in the presence of a latitudinally sheared zonal flow. The
perturbation equation is found to possess seven regular singularities provided the fluid is
non-Boussinesq, and only five for Boussinesq fluids. In slowly varying shear a local dis-
persion relation is derived and used to study the wave normal surfaces and ray
trajectories. The cross sections of the wave normal surfaces in horizontal planes possess
three critical latitudes occurring where the intrinsic frequency & takes the values 0,
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46 B. M. AHMED AND I. A. ELTAYEB

+ N, where N is the Brunt—Viisilla frequency. The former is the usual Rossby wave
critical latitude (R.w.c.l.) and the latter are essentially gravity wave critical latitudes
(g.w.c.l.). Waves can propagate only on one side of a R.w.c.l. while propagation is
possible on both sides of a g.w.c.l. provided the vertical wavenumber, m, there is real and
non-zero. Also for real values of m and provided the atmosphere is non-Boussinesq the
g.w.c.l. exhibits valve-like behaviour. Such valve behaviour is shown to be responsible
for aiding high frequency waves (i.e. gravity waves) to penetrate jet-like wind streams
and may facilitate the transfer of energy and momentum across latitudes.

The full wave treatment shows that the system possesses a wave-invariant which has
a simple physical interpretation only when m is real in which case it represents the
conservation of the total northward wave energy flux. The invariant is used, together
with the legitimate solutions near the critical latitudes, to study the influence of each
of the critical latitudes on the intensity of the wave. It is found that the R.w.c.l. can be
associated with energy absorption or emission, depending on certain specified con-
ditions, but the g.w.c.l. is always associated with energy absorption although the
amount of energy absorbed depends crucially on whether m is real or imaginary.

The reflexion, transmission and stability of atmospheric waves by a finite shear,
thickness L, are also studied, by using a full wave treatment in the presence of general
flow profiles. For smoothly varying shear flows the use of the wave-invariant yields a
relation between the reflexion and transmission coefficients. It is then deduced that in
the absence of critical latitudes within the shear over-reflexion (i.e. the amplitude of
the reflected wave exceeds that of the incident one) is possible only for real values of
m in which case planetary waves incident on the shear are transmitted as gravity waves
on the far side of the shear. Such over-reflecting régimes are, however, due to the
presence of natural modes of the system. Moreover, it is found possible to isolate certain
situations in which the R.w.c.l. within the shear enfances over-reflexion.

The situation when the shear is linear and thin is studied analytically. Explicit
expressions for the reflexion and transmission coefficients are obtained. It is then shown
that over-reflexion is present in a stable shear in which case the energy is extracted
from the mean flow primarily at the R.w.c.l. The influence of a general flow on the
R.w.c.l is also studied in a special case to show that the reflectivity and stability pro-
perties of the thin shear are strongly dependent on the type of shear present. Comparison
of these results with those obtained for the corresponding vortex sheet show wide dis-
agreement. A general criterion for determining whether a vortex sheet will adequately
represent the corresponding thin shear layer is offered in the final section.

1. INTRODUCTION

Rossby (1939), in his study of the relation between variations in the intensity of the zonal
circulation of the atmosphere and the displacements of the semi-permanent centres of action,
approximated the spatial variations of the vertical component, f, of the angular velocity of the
earth in the neighbourhood of a point latitude 6, by

S =Jo+ By,
where y is the northward distance measured from the point and
Jo=20sinb,, p = (202/a)cosb,,

where Q is the magnitude of the angular velocity and a is the mean radius of the Earth. Rossby
also neglected the horizontal component of the Earth’s rotation. This approximation is now
known as the #-plane approximation and the waves whose existence is due to this f-effect are
generally known as Rossby (or planetary) waves. The main advantage of this approximation is
to permit the neglect of the curvature of the Earth except in as much as it affects the magnitude
of the vertical component of .


http://rsta.royalsocietypublishing.org/

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ATMOSPHERIC ROSSBY-GRAVITY WAVES 47

Longuet-Higgins (19644, 1965) studied the propagation of planetary waves both when the
plane is infinite and bounded and compared the results with those obtained by direct methods.
One of the important results emerging from these studies is that the f-plane approximation
provides an adequate representation of the local behaviour of planetary (Rossby) waves in thin
spherical shells (like the Earth’s atmosphere) except in the neighbourhoods of two ‘singular’
latitudes (one on either side of the equator). This result has not only added support to the
plausibility of conclusions about atmospheric waves reached using a f-plane approximation
(Rossby 1939; Charney & Drazin 1961 ; Drazin & Howard 1966) but has also initiated further
studies on various aspects of wave motions on a beta-plane. Longuet-Higgins (19645) in his
study on the group velocity and energy flux of planetary waves found that planetary waves (in
the absence of a flow) can only propagate (in phase) westward but both westward and eastward
energy propagation (as defined by the direction of the group velocity) are possible. Lighthill
(19674a) studied the generation of Rossby waves by travelling forcing effects. McKee (1972)
examined the scattering of Rossby waves by partial barriers in an attempt to estimate the energy
penetrating the Drake Passage between South America and Antarctica. Studies on the stability
of Rossby waves in the absence of a shear flow were made by a number of authors (see, for example,
Gill 1974; Coaker 1977) and for particular basic flows by, for example, Dickinson & Clare
(1973); Geisler & Dickinson (1974).

The beta-plane approximation has also been used in magnetohydrodynamics to obtain simple
solutions amenable to exact treatment in order to understand the basic physical processes
taking place in complex systems. Hide (1966) in his study of the geomagnetic secular variations
initiated such an approach by investigating the propagation of hydromagnetic planetary waves
in thin spherical shells to obtain a simple dispersion relation which was later studied extensively

-by Hide & Jones (1972). The propagation of hydromagnetic planetary waves through latitudinal
velocity and magnetic shear, as well as their reflexion by shear layers, have recently been studied
by Eltayeb & McKenzie (1977).

The propagation of planetary waves in zonal flows which vary with altitude was studied by
Charney & Drazin (1961) in their investigation of the energy transfer from the lower to the
upper atmosphere. They found that, with parameters appropriate to atmospheric conditions,
planetary waves are evanescent in the vertical direction and concluded that little energy transfer
can take place by planetary waves. Dickinson (1968) examined the propagation of planetary
waves sheared latitudinally and pointed out the existence of critical latitudes, occurring where
the intrinsic frequency @ = 0, where the northward transfer of zonal momentum experiences a
finite jump.

Recently the propagation of planetary waves on a beta-plane in the presence of latitudinally
sheared zonal flows has been studied by Mekki & McKenzie (1977, hereinafter referred to as
M.M.). In M.M.the general wave equation for an isothermal atmosphere was derived but a
detailed study was made when the assumptions

() 0 <2,

(ii) @* < N2,

(iii) Boussinesq approximation ,
were applicable. Here @ is the intrinsic frequency defined by & = w — kU, where wis the frequency,
k the zonal wavenumber and U the zonal flow; N being the Brunt-Viisalla (buoyancy) frequency.

The propagation properties in different types of zonal flow were studied and the various types of
6-2
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48 B. M. AHMED AND I. A. ELTAYEB

ray trajectory were identified. The reflexion of the waves by a vortex sheet was investigated and
the solutions near the critical latitudes were examined.

Although the study in M.M. is comprehensive, a number of questions on the general pro-
pagation properties of wave motions (in latitudinally sheared zonal flows) in the atmosphere
remain unanswered. In view of the fact that gravity waves (frequency w ~ N) are known to
exist in the atmosphere (Hough 1898) and believed to account for some of the energy transfer
to the ionosphere (Hines 1959; Hines & Reddy 1967) in addition to their importance in the
planetary boundary layer (see, for example, Davis & Peltier 1976), what are the circumstances,
if any, in which a planetary wave (w € N) can transform into a gravity wave, if we take into
account that although w may be small compared to N, the intrinsic frequency & may compare
with N if the flow speed is large enough? What is the influence of the vertical wavenumber on
the latitudinal transfer of energy and momentum? What is the influence of the critical latitudes
on the reflectivity, transmissivity and stability of atmospheric waves riding a general profile of a
basic flow? In the present study we attempt to shed some light on the answers to these questions,
by extending the study in M. M. to the régime in which the restrictions (1)-(iii) above are absent.

In §2 we briefly derive the full wave equation governing perturbations in an isothermal
compressible atmosphere in the presence of latitudinally sheared zonal flow. In the absence of
the restrictions (i)—(iii) made in M.M. the wave equation possesses seven singularities as com-
pared to only three predicted by the M.M. theory. An examination of the influence of com-
pressibility, Boussinesq approximation and low frequency restriction on the system shows that
the effect of compressibility is mainly to introduce acoustic-gravity waves when the flow speeds
are comparable with the speed of sound. Realizing that most wind speeds in the atmosphere are
subacoustic the analysis is restricted to incompressible fluids. However, the influence of the
Boussinesq approximation is found to have rather drastic effects on the system: it not only
reduces the singularities of the system to five but it also annuls a valve behaviour which, in
general, occurs at the critical latitudes & = + N, when the vertical wavenumber, m, is real.
Incidentally the nature of m (i.e. real or imaginary) has a very strong influence on the type of
solutions that can prevail in the vicinities of the critical latitudes & = + N.

In § 3 we study the propagation of Rossby-gravity waves in slowly varying shear flows. When
the wavelength of the waves is much smaller than the scale of variations of the basic flow, a
W.K.B.]. solution yields a local dispersion relation. This relation is examined geometrically for
all frequencies @ < N. The cross-sections of the wave normal surfaces in the (, /) plane, where
{ is the local northward component of the wave vector, showed that three critical latitudes,
occurring where & = 0, + N, are possible. The critical latitude @ = 0 is the usual planetary
(Rossby) wave critical latitude (R.w.c.L.) while the critical latitudes at & = + N resemble gravity
wave critical latitudes (g.w.c.l.), which have been the subject of study by a number of authors
(see, for example, Booker & Bretherton 1967; Baldwin & Roberts 1970; Breeding 1971 ; Eltayeb
& McKenzie 1975), although a detailed analysis of the present g.w.c.l. showed that its influence
on the intensity of the wave is essentially different from that of the classical gravity wave critical
level because of the presence of rotation. This becomes particularly evident when the reflexion
of atmospheric waves by a finite shear is investigated in § 6.

The wave normal curves in the (£,/) plane show that planetary waves propagating in a flow
increasing with latitude are reflected towards their critical latitudes but at higher flow speeds
gravity waves appear, the regions of propagation of the two waves, being separated by a domain
of evanescence. This state of affairs is pertinent only to the slowly varying basic state. In a full
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ATMOSPHERIC ROSSBY-GRAVITY WAVES 49

wave treatment theregion of evanescence is modified considerably and as a consequence planetary
waves propagating into strengthening wind profiles are transformed into gravity waves (in the
sense that energy and momentum is transferred from the planetary wave to the gravity wave
through the interaction with the mean flow). Such situations are shown in §6 to give rise to
over-reflexion and instability.

Propagation in the vicinities of the g.w.c.Is is found to depend crucially on m. If m is real,
propagation is possible on both sides of the g.w.c.l. A wave approaching such a critical latitude
will either be absorbed or transmitted according to whether

vgmfelUd 2 0,

at the critical latitude, where v is the local group velocity component in the northward direction
and g the gravitational acceleration. If m is imaginary no propagation occurs near the g.w.c.ls
(although a full wave treatment indicates that the solutions are oscillatory on both sides but no
valve behaviour is present). In the case of two-dimensional wave motion (i.e. m = 0) propagation
is possible only on one side and a full wave treatment shows that the situation is identical to that
of the classical gravity wave critical level when the Richardson number is £.

Adopting the group velocity approach (Lighthill 1965) the local dispersion relation is used
to construct the various ray trajectories that can arise in different flow profiles. In jet-like streams
planetary waves can propagate across the jet if the maximum speed, U, is small, but as U,
increases planetary waves are ‘pushed’ to the wings of the jet and gravity waves appear around
the centre. Despite the existence of g.w.c.Is there, gravity waves can, in certain circumstances
and by virtue of the valve behaviour, propagate right across the centre of the jet even in the
presence of two g.w.c.Is (cf. §3).

In § 4 we derive the wave-invariant, &7, of the system. Here m again plays an important role.
If m is real then &/ is proportional to the total wave energy flux, F, in the northward direction
but for imaginary m, F is not conserved. Section 5 deals with the detailed analysis for the solutions
in the neighbourhoods of the singularities of the system.

In § 6 we investigate the reflexion by and transmission through a shear layer, thickness L. For
arbitrary values of L only a general relation between the reflexion and transmission coefficients
is derived by using the wave-invariant 7. This relation is, however, sufficient to show the
possibility of over-reflecting régimes even in the absence of critical latitudes within the shear. It
is also possible to isolate certain circumstances in which the presence of a critical latitude enhances
over-refiexion. These general results are confirmed by a detailed analysis for the case of a thin
shear (in the sense that kL < 1). Here explicit expressions for the reflexion and transmission
coefficients are obtained and the stability of the thin shear is also examined. The results show
the existence of stable over-reflecting régimes; a result which has already been shown to apply
for the current-vortex sheet in some hydromagnetic systems (Acheson 1976 ; Eltayeb & McKenzie
1977). However, a comparison of the thin shear layer results with those obtained for the corre-
sponding vortex sheet treatment in M. M. shows that agreement is not satisfactory. The reasons
for the discrepancy in the vortex sheet treatment in the present case are mainly due to the
presence of critical latitudes within the shear. By considering a variety of other situations it
seems possible to identify the cases in which sudden discontinuities would provide a reasonable
representation of the thin shear layer model (see § 7).


http://rsta.royalsocietypublishing.org/

JA \

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

50 B. M. AHMED AND I. A. ELTAYEB

2. THE WAVE EQUATION

The equations governing the propagation of atmospheric Rossby-gravity waves on a beta-
plane in the presence of a zonal flow sheared latitudinally have been derived in M.M. Un-
fortunately, however, their wave equation is incorrect although most of the general conclusions
they reached, within the context of the assumptions they made, still hold good. For the purpose
of the study presented below it is necessary to obtain the correct wave equation. This will be
particularly evident when we discuss the wave normal surfaces in § 3 and the critical latitudes of
the system (see §§ 5 and 6).

The basic equations governing motions in an isothermal compressible dissipationless rotating
fluid are those of momentum, continuity and energy. They are respectively

p(Du/Dt+2Q Au) = —~Vp+pg, (2.1)
Dp/Dt+pV-u =0, (2.2)
Dp/Dt—¢*Dp /Dt = 0, (2.3)

in which the mobile operator, D/D, is defined by
D/Dt= 0/0t+u-V. (2.4)

Here p is the density, u the velocity, £ the angular velocity, p the pressure, g the gravitational
acceleration, ¢ the time, ¢ the speed of sound (assumed uniform) and V is the standard gradient
operator.

We consider a cartesian system of coordinates Oxyz at the locality of the point O such that
Ox, Oy and Oz lie along the east, north and upward vertical respectively. We take a basic state
in which the velocity, pressure, density and angular velocity assume the values u,, py, p, and
1 f%, where % is a unit vector in the direction of z increasing, and

1 9p, 1

Uy, = U(y) &;a f=‘ﬁ)+ﬂ]/: ;(;5 = ""‘H= const., . (2‘5)

in which & is a unit vector along Ox. The basic state pressure is then governed by
3o/ = —pofU, Opo/0z = —pog, (2.6)

which yield an equation for the variation of p, with latitude

10p, _
f);a_y =—fU/gH = —a(y), say. (2.7)
In (2.5) and (2.7) f, = 2Qsinb,, f=(22/a)cosby,, H=RT/g (2.8)

in which 6, is the latitude of O, T the uniform temperature of the atmosphere, R is the universal
gas constant and a the mean radius of the Earth. It may be remarked here that the neglect of the
horizontal component of € is physically plausible provided 6, is not too small (Longuet-Higgins

1965). .
We now perturb the basic state by letting

u=u,+uy, p=potp, P =pPotp (2.9)
and introduce the transformation
u, = Po_%“a (Pnl’l) = p%(p,ﬂ) (2'10)


http://rsta.royalsocietypublishing.org/

JA

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ATMOSPHERIC ROSSBY-GRAVITY WAVES 51

defining the field variables u, p and p. From now onwards the symbols u, p and p stand for field
variables and should not be confused with the symbols used in the general basic equations, which
will not appear again below. If we let u = (%,v, w) and assume that all field variables have the

dependence X(x,9,2,1) = Re {X(y) expi(wt — kv —m2)}, (2.11)
we can write the perturbation equations in component form. Thus

iou—(f=U")v = tkp, (2.12)

i0v +fu+fUp = 0p /0y + 4ap, (2.13)

10w = imyp — pg, (2.14)

iKp = iku— (0/%y — a) v +imgw, (2.15)

i0p = (fU—ac®) v+ (g—c/H) w+idpc>. (2.16)

The intrinsic (Doppler-shifted) frequency, @, and the modified ‘wavenumber’ in the vertical

direction, m,, are defined by 0 = w—kU, my=m—i/2H. (2.17)

After lengthy, but straightforward, manipulations all variables can be eliminated in favour of
p. Thus

p”+{g(2-i-ﬂggr]\;2) T = D) (qu—g 62),}1" +{5(7V—29:6—2) (g)——ﬁf;—m}p =0, (2.18)

where
E = kf(N*— %) + be(-é——H——c—z) +1"""ng = E+iE,
Q = (N*=0%) (6*=f*+/ U") + G*UN3/gt = — A(N*— 0%) + O 2U*N* /2,
= =0y + (4L "QZN = (a2 -F) 0oy (2.19)
—“A’zf;g? 20k f( )+U f[akU(c2 EQT{)
(m2+4rlg—2—§)]—i'ﬁg%v£=Cr+iCi. |

The remaining field variables are related to p and its first derivative by

v =iQ7 [Ep+0(N =094

() -l ool
i e LR
+Q(S-U) (N2=0%)p/,

w=é{ lg[cﬁA(2gH c2)+f2gUN2]+»a(A+f2Z:N2)}p—i“A’fggN2p'.

In (2.12)—(2.20) a prime denotes differentiation with respect to the argument and N is the
Brunt-Viisilla (buoyancy) frequency defined by

N2 = g(%—ﬁ). (2.21)

c2
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For the purpose of the discussions in the subsequent sections we require to make two trans-
formations on p. First we take

p=hp, h=[Q/(@~ N} | (2.22)
and use (2.18) to obtain the following equation for ¢
(62— N?) " —i(2mfUN*/g) '+ (b+id) ¢ = 0, (2.23)
in which
— (EI' Q,_E;' Q) k2N2U’2 A Ql naAa ” (&\)2-N2) 30’2 (6)2_N2)
b=Ci+ 50 +(é\)2__N2)——kUwa+kU O+Q T“IQ "‘Q—z,
_ _mN? . 2fUU’
d= 2 [ﬁU-l—fU +(_¢?)2TN—2_)] (2.24)

The second transformation removes the coefficient of ¢’. Thus letting

¢ =x¥, X'/x=imfUN?/g(d*—N?), (2.25)

and substituting into (2.23) we obtain
Y+ €Y =0, (2.26)

b + m%}('ZUZN2
(6)2_N2) g2(6)2_N2)2'

where € = (2.27)

The equations (2.23) and (2.26) have been derived to ilustrate two important properties of
the problem. We first note that % is real contrary to the findings in M.M. The discrepancy in
the equation obtained in M. M. is that the term f Up was neglected in the equation corresponding
to (2.13) above. This resulted in the coefficient of ¢’, as in (2.23) above, being half its present
value and thus % was found to be complex. Secondly, the dispersion relation of the system is
obtained from (2.23) for real m and from (2.26) for imaginary m. The study in M.M. concentrated
on the latter and we here deal with the former, although some new properties of the latter are
also investigated. It transpires that the situation of real m gives rise to certain novel features like
valve behaviour and over-reflexion by a finite shear. These phenomena will be discussed in
§§ 3—6 below.

The equations (2.18), (2.23) and (2.26) governing linear wave motions in an isothermal
atmosphere on a beta-plane in the presence of a latitudinally sheared zonal flow are all singular

where
H=0, ®2=N2 @ =0, (2.28)

which, in general, represent seven possible singular latitudes. However, in the Boussinesq approxi-
mation (i.e. in the limit g - o0, H-* - 0 with H-1¢ finite) the third equation of (2.28) reduces to
A = 0 giving only fwo (instead of four) singularities because in this limit two of the singularities
coincide with those given by the second of (2.28). Consequently the Boussinesq approximation
filters out two singularities of the system. Another consequence of the Boussinesq approximation
is that the coefficient of ¢’ in (2.23) would vanish. For a non-Boussinesq fluid however this term
cannot be neglected in the neighbourhood of ®2 = N2 no matter how small mN3¢'/g¢" may be.
The nature of the singularities (2.28) will be discussed in § 4 below.
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3. THE WAVE NORMAL SURFACES AND RAY TRAJECTORIES

Before we proceed to study the full equations (2.23) and (2.26) it is constructive to carry out
a W.K.B.J. treatment of these equations. This is valid provided that the wavelength A of the
waves in the northward direction is much smaller than the scale L of variations of U. In a formal
W.K.B.]J. (see, for example, Reid 1965) study the quantity A/L(=e¢) provides the small para-
meter but for our purposes here it suffices to set U’ = U” = 0 and assume solutions of the form

$(y) oc exp (—ily) or Y(y)ocexp (—imy), (3.1)
depending on whether (2.23) or (2.26) is to be solved, to obtain the dispersion relations
(@2 —N2?) 12+ 2mfUN?/g—b, =0, (3.2)
h (08— N¥) 12— by — m¥fRUEN?[g2(6~ N*)") = 0, (3:3)
where
“ f2U2N2 1 o2 “ m%f‘2U2N2
b1=k2(N2—0)2+ g2 + m2+m—? (fz—w2)+——————g2
_0RrUR +orupe (2 N2 o1 _,6’(@2—N2){k(c?)2—N2) (@241 O*2UN%%
4g2H2 (;2 Ql o g2
L PPN L |
#3(5 =) 000+ (3|
2((H2 — N2l T2 N2 N2fF2IT2 N2
SO e e PO g vy e on) + L
Q1 g g
in which Q, = (02— N?) (f2—0%) + &% *UN?/g% (3.5)

The relations (3.2) and (3.3) are in general complicated and exact solutions require extensive
numerical computations. It turns out however that for subacoustic wind profiles (i.e. when
U?/c* <€ 1) the problem can be studied analytically. Accordingly 4, can be simplified to
by = BN~ G%) + (m2+ 1) (2~ 0?)
— PE(@*— N?) (f?+07)/(Q, 0) — f*(0 — N?)3 (6% +2f*) / QF. (3.6)
It should be remarked here that the last term in the expression for @, (cf. (3.5)) is 0(U?/c?) but
due to the possibility that @2 can take the values f2, N2 this term must be retained.

3.1. The wave normal surfaces
In the absence of a flow (i.e. U = 0) the relations (3.2) and (3.3) both reduce to

PR +0%) _ =)
2 2 2 —
k24124 o) +4H2 i) (3.7)
The propagation properties of this equation can better be seen through the alternative form
(S+0) 1, e Loty pB0t o f
[k+2w( Fiseon| T +4H2) NZ) LA PR (3.8)
which immediately shows that propagation is possible in the horizontal plane (i.e. real £ and [) if
s 2 f2_w2 ﬂ2(3w4 f2w2___f4)
= () (=) -t > 0 39

5 Vol. 2g8. A
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while propagation in vertical planes is always possible, although it may be restricted to small
regionsin certain circumstances, if w? < f2 (if we assume that f2 < N?, asis the casein the Earth’s
atmosphere). When (3.9) is satisfied the cross-section of the wave normal surfaces in the (£,1)
plane is a circle of radius r and centre at

(ke 0); ke = = B(S?+ %) [20(f? = ?). (3.10)

In M.M. (3.8) was studied when w? < f% € N? in which case eastward phase propagation is
possible only if m is imaginary since (3.8) and (3.10) then take the form

(k+%)2+12=£;—%(m2 4H2) (3.11)
(ke 0) = (— /20, 0).

Here we intend to study the propagation of waves for which w? < N? always assuming that
f? < N2 This range of values of w? spans a wide spectrum of wave motions ranging from inertial
waves (slightly modified by gravity) with periods of the order of a day to gravity waves (slightly
modified by rotation) with periods of a few minutes.

For f? < w? < N? the centre of the circle (3.8) as given by (3.10) lies on the positive k-axis and
propagation is possible if (3.9) is obeyed. Moreover westward phase propagation of these waves
is possible if 7 is greater than the distance between the centre of the circle and the origin, i.e. if

) (R e

and then the circle will meet the l-axis at [ = + /,, where

ly = 5, (3.13)

the intersection of the circle and the £-axis occurring at & = £y, where

A
ki = 20)(f2—0)2) +7. (314)

The group velocity in the (£, /) plane is defined by

wo-(2.2)
G \ok’ ol

(cf. Lighthill 1965) and can be obtained directly from (3.8). Thus

0w i+ w?) ow {
- [k+2w o ]/K Ol (3.15)
e B P D

For f2 < w? < N2 the last two terms in the expression (3.16) are both negative while the first
takes its maximum value at £ = k.. However when we substitute £, for £ in (3.16) and use (3.14)
we find that K(w) is always negative, provided (3.9) is satisfied. Thus for f2 < w? < N2, the
group velocity in the /-direction is always positive (negative) for positive (negative) [. (For
illustration see figures 3 and 4.) This may be contrasted with the case w? < f2, where the group
velocity has the opposite sense.
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In the presence of a flow U the cross-sections of the wave normal surfaces in (£,/) direction
are more complicated. The most significant change is the appearance of asymptotes at & = 0, + N.
(The apparent asymptote at @, = 0 is non-existent since no propagation is possible in the
immediate neighbourhood of @, = 0.) Realizing that if w? < f2itisstill possible for certain values
of k and U to have @? < f2 we shall study the full range @2 < O(N?). In this way it is found that
the restrictions

(i) &< f3
(i) &2 < N2,

(iii) Boussinesq approximation,

made in M.M. from the outset filtered out certain characteristic features exhibited by the
propagation of Rossby-gravity waves on a beta-plane in the presence of latitudinally sheared
zonal flows (see figures 1-9). Prominent among these is the valve behaviour at the critical
latitudes &% = N% when m is real.

Consider (3.2) and (3.4) in the vicinity of ®* = N2. They can be solved for [ to give

2, L \(P-N?¢
b~ (’” +4H2) omfUN?

2mfU N?
g(@*—NE)
where /; refers to the finite value of /at #2 = N2?and /,, refers to the value that increases indefinitely
as @* approaches N2 (see figures 1-4). The group velocity in the /-direction (for &% ~ N?) is
given by '

(3.17)
I, =~

o0 —(@*—N*I-mfUN?/g (3.18)
qA T TR +m+IH ) :
When [ oo, we have, after using (3.17),
vg ® mfUN?/(gbl2), (3.19)

an expression that tends to zero as @* approaches N2 The ray (3.19) then approaches the critical
latitude, yc, in a way governed by the equation

ay/at = _a(y_yc)zs (3.20)
where a (# 0) is a prescribed constant (see, for example, McKenzie 1973). Thus
y—Yo = (b+at)™? (3.21)

and therefore the ray, whose position is y, cannot reach the critical latitude y, in a finite time.
Thus this ray is absorbed at the critical latitute.
On the other hand,
—mfUN*/g
Yat X o R A mi+1H )

(3.22)

at ®% = N2 and it is finite there. This means that the ray (3.22) propagates across the critical
latitude #2 = N2 unhindered. Thus a wave approaching any one of the critical latitudes &2 = N2
is transmitted or captured according to whether

gmfUdvs S 0. (3.23)
7-2
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Such valve behaviour was first detected by Acheson (1972) and McKenzie (1973) for hydro-
magnetic waves and by Acheson (1973) for non-hydromagnetic waves. It has since been found
that such behaviour is suffered by a variety of critical levels (see, for example, Grimshaw 1975,
Eltayeb & Kandaswamy 1979).

Another characteristic feature concerns the ¢ coupling’ between planetary and gravity waves.
Here a planetary wave in a stationary medium (or in a medium with a weak zonal flow) approach-
ing a shear layer may emerge as a gravity wave on the far side of the shear provided the shear is
strong enough. This fact will be shown in § 6 below to effect over-reflexion.

The above results (and also for frequent use in the discussions in §§ 4-7 below) can conveniently
be illustrated geometrically. We shall now summarize a few elementary results to help us follow
the evolution of the wave normal surfaces with the flow U.

If % > 0 (see (3.12) above), the wave normal surfaces will meet the /-axis in /,, where

_ mfUN?

L —Mi& (3.24)

When [ = 0, the surfaces meet the £-axis at points satisfying
by = 0, (3.25)
where b, is given by (3.6). If | U| is small then (3.25) yields the roots

Vi wF N (N*Tf2) U
T

w. P _ 21—y TS Y
+(x), k2,3 +(m +IH )2N((L)$N)2’

kl:U

(3.26)

in addition to the roots k., as given by (3.14), but they are now slightly modified by the presence
of the flow (provided 72 > 0). If 72 < 0 then only the roots (3.26) are present. For large values
of |U]|, (8.25) has only three roots given by

w wf2N2p

e A T Y ey
w—a w+oa
k2=T, k3=T, |U">°0s (3.27)
in which a2 is the only positive root of the cubic
(m?+ 1H-2) (f2— 0?) — {0 = N?) (22 +6%) = 0, (3.28)
which satisfies the inequality Sfi<a?< N2 (3.29)
Also, asymptotes exist at £ = £, £+ where
) w+ N
koo = T], kco:t = T (3.30)

The evolution of the cross sections of the wave normal surfaces in horizontal planes with varia-
tions in the basic flow is summarized in figures 1-4.

The dispersion relation (3.2) also governs the propagation of Rossby-gravity waves in a
vertically sheared zonal flow if the vertical wavelength is much smaller than the vertical variations
of the basic flow. It is then possible to investigate the cross-sections of the wave normal surfaces
in the (m, k) plane for fixed values of /. Examination of the dispersion relation (3.7) and (3.8)
shows that propagation is possible (i.e. real m) only if either w? is less than f2( < N2) in which
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case k£ must be negative or if f2 < w? < N? and then £ can be either positive or negative. The
wave normal curves in the (£, m) plane are ellipses if w? < f? and hyperbolae if /2 < w? < N2
In the presence of a flow the wave normal curves in (k,m) planes possess three asymptotes

(i.e. critical heights) at 6=0, +f (3.31)

By the use of other elementary properties, as in the case of the wave normal curves in (/, %)
planes, these curves are illustrated in figures 5 and 6.

‘1

s

3

ke |Ki

@)

|
l
l
l
|
I
|
I
I

l | IAY

F1cure 1. The cross-section of the wave normal surfaces in the (£, /) plane for increasing values (counting up) of a
westerly flow (U > 0) when w? < f% < N? and m is real. The circle 1 is present in the absence of the flow if
(3.9) is satisfied. As U increases it shrinks until it disappears at a value U of U. If (3.9) is not satisfied the circle
1 is absent and so is the closed loop 2, but the other curves remain. For notation see § 3.

e

I
l
|
| Il |

Ficure 2. The wave normal curves in the (k,1) plane for increasing values (counting up) of an easterly flow when
w? < f? < N?and misreal. The closed loops 1 and 2 are present only if (3.9) is obeyed.

i k-
|
|
|
l


http://rsta.royalsocietypublishing.org/

o \

p &

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

”/\\ \\

| A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

58 B. M. AHMED AND I. A. ELTAYEB
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Ficure 3. The evolution of the wave normal curves in the (£,{) plane with increasing values of a westerly wind
(counting up) for /2 < w? < N? and real m. When (3.9) is satisfied the circle 1 is pushed to the left until it
coalesces with the k,,_-branch of the gravity wave as in stage 3. If (3.9) is violated then the closed loops are
missing and the k,,_-branch lies wholly to the left of the l-axis. The points at which the curves meet the /-axis,
when they exist, will vary with U if U is large enough to compare with ¢.
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Ficure 4. The same as ﬁgure 3 except that the ﬂow is easterly. The figure is drawn for s2 > 0 (cf. equation (3.12)).
If 52 < 0 but 72 > 0 (cf. equation (3.9)) the closed loops will lie on the right of the l-axis and will disappear
completely if 72 < 0.
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F1cure 5. The cross sections of the wave normal surfaces in the (k, m) plane for various values of { when w? < < N2,
The long arrows give the direction of increase of |/| and the short arrows give the direction of group velocity.
The closed loop disappears for large |!|.

|

Ficure 6. The same as in figure 5 except that here 2 < w? < N2,
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3.2. Ray trajectories

The dispersion relation (3.2) can be written in the functional form
wk,l,m; N, f,5,U,g) = 0. (8.32)
For fixed values of the parameters, N, f, 8, U, g this relation represents a surface § in the (£, [, m)
space. The gradient to § is the group velocity

dw dw Jw
Ug = (5/;’ KTk %) = (Ugs Vg Wg), (3.33)

which represents the direction of the ray at that locality. Moreover, the zonal wavenumber £
and frequency w are conserved along a ray path in the (x,7) plane (Longuet-Higgins 19644;
Lighthill 1967 4). By locating the direction of the group velocity, which is normal to S by (3.33),
at every point it is then possible to construct the various types of ray trajectory that can occur
in different profiles of zonal flow.

Now the group velocity (ug, vg) in the (x,y) plane is given by

ug = U+ (N?—@?) [k + (&% - N*) (f2+@2)/(@Q1)]/K(@),}

’ (3.34)
vg = —[U(&*— N?) +mf UN?/¢]/ K(®)

in which K(6) = Gk +12+m? + LH2) + BE(N?— %) (2% +30% — N2) /@2
LBV = 0%) (f2+0°) (N2 412~ 2074 U*N?/g?)
— BN = 0%) (6 + 467~ V%) 0/ Q3
20§22+ 0%) (N +f? = 20° +/2U°N°/¢7) |

when m is real. A ray propagating horizontally will be reflected at points where v = 0, together
with the conditions that / is finite and governed by the dispersion relation there. For each value
of U (# 0) five reflexion points are found if no propagation is possible in the absence of a flow
and seven otherwise (see figures 1-4). Let us adopt a notation for these points. We denote the
reflexion points in the absence of a flow (if they exist) by &%, those near £.,_by 5. (with £5_ < &%),
those near £, by k47 and that one near &, by £} (see figure 1). For a particular wave (i.e. given
k, m, w, N, f, B, g) these reflexion points can be encountered by the wave only if U attains a
certain value. We shall give such U the same label as that of 4, i.e. if a wave reaches a latitude
corresponding to £} we shall denote the value of U there by U} and the value of y there by 1.

In figures 7-9 we sketch some of the various types of ray trajectory that can arise in an anti-
symmetric profile of U. Here the planetary wave trajectories lie in the vicinity of U = 0 while
the gravity wave rays (with their valve behaviour) occur far away from y = 0 where the flow
is strong.

In symmetric jet-like streams the inclusion of gravity waves to the treatment in M.M. intro-
duces novel features. In particular for planetary waves (i.e. w? < f2 and £_ < k£ < k_) the rays
in the vicinity of the centre of the jet are strongly influenced by the value of the speed at the
jet-centre, Upax. For small values of U,y (assuming the jet is westerly) planetary waves can
penetrate the centre of the jet, as has been shown in M.M. (cf. figures 10, 11 and 12). If however
Unpax 1s increased planetary waves are expelled from the jet centre (essentially because @2 now
exceeds f) and gravity wave rays appear there. Indeed for certain values of U,, two critical

latitudes, of the gravity wave type, appear, one on either side of the jet centre. Provided Up,,
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Ficure 7. The ray system in a westerly wind increasing steadily from — oo aty = — oo to + 00 aty = + o0, being zero
aty = 0, for £ > 0 in the case w? < f? < N2 and m (#0) is real. If m is imaginary only the branch near y,
remains and if m = 0 the valve behaviour at y,, disappears and the rays there become similar to the one near
Yo with both rays lying on the sides nearest to y,. Note that here and in the following figures y, refers to the
R.w.cl. and g, refer to the gw.clsatk,,.

Ficure 8. The same as figure 7 but for £ < 0. Near y, the looped ray B corresponds to &, < k£ < k, and the dis-
continuous ray A corresponds to k < k,, when k_ are real. If ¥, do not exist then ray A is present. The figure is
drawn for m (# 0) real. For m = 0 the same modifications as in figure 7 apply.
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Ficure 9. The ray system for the flow specified in figure 7 when f2 < w? < N for real non-zero m and positive £.
The loop is relevant if 0 < k£ < k,. The reflexion points have the same meaning as in figure 7.
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is not too great (or more precisely if (w— N)/k < Upayx < Uj_) a wave propagating towards a
critical latitude may be transmitted to the other side, which is nearest to the jet-centre, propagate
across the jet centre and advance towards the other critical latitude across which it is trans-
mitted to emerge in the far wing of the jet. In the same circumstances a wave is trapped between
the two critical latitudes around the centre of the jet (see figures 10 and 11). Similar behaviour
occurs in an easterly jet (see figures 12 and 13). Moreover, in an easterly jet, and provided
f?<w?< N?and 0 < £ < k,, for certain values of U,, a wave can propagate from the centre
of the jet towards a gravity wave critical latitude which it crosses to propagate far into the wing
of the jet (figure 134). Furthermore, situations may arise whereby a wave propagating from
one wing of the jet may pass through the jet centre and right across a critical latitude to emerge
on the far wing of the jet. Some of these situations are illustrated in figure 14.

(a) (b)

£
R

(c) E%" (d) (,)

(e)

av.i
N
€

TN N

g

Ficure 10. The evolution of the system of rays in a westerly jet-like wind when w? < f* < N for increasing values
of the maximum jet speed for values in the range k.. < k£ < k,. The origin of coordinates is taken at the centre
of the jet. If Uy is the smallest value of U at which equatjon (3.2) has a repeated root for / and U,,,, is the speed
at the jet centre then the figure is classified as follows: (2) Up,y < Uy (6) Uy < Upey < Utys (¢) Ul < Upax
< (@=N)/k; (d) Upye = (0= N)/k; (¢) (0= N)/k < Upyy < Us_; (f) Upax > Uj_. Note that (a) corresponds
to figure 5 (d) in M.M.
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Before we conclude this section we briefly discuss the normalized dispersion relation (3.3).
This relation represents the dispersion relation of the system when m is imaginary in which case
the wave normal curves in the (/,£) plane are the same as those studied in M.M. (see figure 9
in M.M.), because no propagation can then take place near the singularity @* = N2. Moreover,
the curves in the (z, k) plane associated with real m are required for the study on the reflexion
by a finite shear layer carried out in § 6 below. For this purpose we have sketched these curves
for w? < f?in figure 15 which also defines the notation required in § 6.

-,

(c)____lo‘i _____ (@) P

Yz

1 S/ e
yr T
/\-. x

Ficure 11. The rays that can arise in a westerly jet stream when /2 < w? < N?2and k >k, for increasing values of
the speed at the centre of thejet. If U,,, < w/kno propagation takes place. (a) w/k < Uy, < Uj; (b) Us < U,y
S U5 (0) Uj- < Upax < (04 N) /5 (d) Upgr = (0+ N) [k; (€) (0 + N) [k < Upay < Upy; (f) Upax > Upye

Another remark concerns the case m = 0, i.e. two-dimensional wave motions. In this case
propagation of waves of the gravity type (i.e. ®* ¥ N?) can occur only on one side of a gravity
wave critical latitude. It appears then that the situation here is similar to that of Rossby wave
critical latitude but a detailed study employing a full wave treatment (§ 5 below) shows that
even in this case the gravity wave critical latitude is different from a Rossby wave critical latitude.

8-2
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(@) \ Y () Y
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L — e = ¥,

N 10 s

FiGure 12. The rays arising in an easterly jet-like wind when £_ < k£ < £, in the range w? < f2 < N2 for different
values of maximum jet speed — Uy, (U < 0): (a) Uy > Up; (8) Upyy = Uy; (¢) Uy > Uy > (0+ N) [k; (d)
Umin = ((1)+N)/k; (E) (w+N)/k > Umiu = UI—; (f) Umin < U;-'

4. ENERGETICS OF THE SYSTEM

The investigation of the wave normal surfaces for Rossby-gravity waves in the preceding
section indicated the existence of critical latitudes. Before we proceed to examine the present
system in the neighbourhoods of these critical latitudes we require knowledge of some of the
basic physical quantities like momentum transfer, energy flux and energy density so that the
physical nature of these latitudes can be assessed. It transpires that these quantities can best be
dealt with in terms of the wave-invariant of the system.

Since % in equation (2.26) is real, it follows from Eltayeb (1977, § 2) that the quantity

A = Im (y*dyr/dy), (4.1)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

ATMOSPHERIC ROSSBY-GRAVITY WAVES 65

(a) Y (b) \\
N j’

THE ROYAL A
SOCIETY [\

PHILOSOPHICAL
TRANSACTIONS
OF

Ficure 13. The evolution of the rays with the increase of speed at the centre of an easterly jet when &, < &k < k..
and f2 < @? < N2 (a) Upy > (0= N)/k; () Upsa = (0= N)/k; (¢) (0= N)/k> Upa = Ugs; (d) Upa < U
Note that on either side of the jet centre the ray propagating away from the jet centre manages to escape to the
wing of the jet even if it started on the inside of a critical latitude.
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FiGure 14. The ray systems in (a) a westerly jet stream corresponding to figure 10 (¢) when the flow at the wings
of the jet exceeds (w— N)/k and () an easterly jet stream corresponding to figure 12 (¢) when the flow at the
wings of the jet has a magnitude greater than |(w+ N)/k|. In both cases four types of rays are exhibited: (i)
Rays 1 propagate from the vicinity of one of the critical latitudes towards the nearest wing of the jet. (ii) Rays
2 propagate from one wing of the jet towards the centre. They penetrate the first critical latitude they encounter
and propagate right through the jet centre, across the second critical latitude on the other side of the jet centre
and deep into the far wing of the jet. These rays can transfer energy and momentum from one wing of the jet
to the other. (iii) Rays 3 propagate from the neighbourhood of a critical latitude across the centre of the jet
to be absorbed at the other critical latitude. (iv) Rays 4 propagate from the wing of the jet towards a critical
latitude where they suffer absorption. These rays transport energy and momentum from the wings to the
centre of the jet. '
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where the asterisk denotes the complex conjugate, is independent of y. It will be shown presently
that o7 is closely related both to the northward flux of wave energy and the northward transfer
of zonal momentum. The northward transfer of zonal momentum is defined by

where the overbar denotes an average over a period. By using the field variables and the expres-
sion (2.20) we can write M in the form

= (k/20) (pv* +p*v) = k|x|2, (4.3)

I

I

I

I

Y. &
km kl k4- :km+ k:«f

I

:

Ficure 15. A sketch of the relation (3.3) in the (n,k) plane for a situation corresponding to stage 2 of figure 1.
If m = 0 only the branches (at £, ) nearest to the n-axis are present and those on the far sides disappear. For
imaginary m all the branches near £, disappear.

after having used the transformations (2.22) and (2.25).

I p
|
|
I
|\

k3‘ Ik“" k3+
| kJ
|
|
|

&

The northward eddy flux of energy (i.e. the northward energy flux as measured by an observer

moving with the flow) is _
Fy = B, = 0 = §(po* +p*0) = O]x|2. (4.4)

The total wave energy flux in the northward direction (i.e. the northward energy flux as
measured by a stationary observer) is

F=pv,+pyUnyv, = po+ Uuv

= (0/®) (pv* +p*v) = |x[>/. (4.5)
The expressions (4.3) and (4.5) obey the classical relation
= (w/h) M, (4.6)

already obtained in M.M. However, the relation of &7 to M and F depend on the value of m.
If m is real then |y| = 1 and hence the invariance of .7 represents the conservation of both the
northward transfer of momentum and the total northward wave energy flux. If m is imaginary
however, neither M nor F is conserved. Had the Boussinesq approximation been adopted, as
in M.M., | x| would not have appeared in (4.3) or (4.5) and M and F would have been conserved
even if m was imaginary. Whether m is real or imaginary the relations (4.3) and (4.5) provide a
means of studying the physical implications of the critical latitudes at & = 0, + N. This will be
carried out in § 5 below.
The total energy density as defined by

& = Huu* +w* +ww* + U(pu* +p*u)], (4.7)
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is found to be a complicated expression of ¥ and ¥’ and because of the appearance of a term
proportional to |'|? it was not possible to relate it directly to <. It may be possible, however,
to define a local group velocity (which would again be complicated) to relate & to F. We will
not pursue this any further here.

5. SOLUTIONS NEAR CRITICAL LATITUDES

The wave equation (2.26) is singular at

b=0, (5.1)
02 = N2, (5.2)
Q=o. (5.3)

The purpose of this section is to investigate the solutions near each of these seven singularities
and examine the influence of each singularity on the northward energy flux and momentum
transfer. We shall find it convenient to adopt the notation that & = 0 denotes a Rossby wave
critical latitude, ®* = N? refers to gravity wave critical latitudes and @, = 0 denotes gravity-
inertial wave singularities.

5.1. Rossby wave critical latitudes

Here the wave equation takes the form

o @ (B-Uq) (f=Uy)
“+ = O’ o = 7 = , 5.4
v (¥ —Y0) v Us f (5:4)

in the neighbourhood of the critical latitude y,, where y, is defined by
| Ulyo) = o/k. (5.5)

The solution of (5.4) was obtained in M.M. Thus
= {A[l—a(y—yo) In (yo—9)1 + B(y —40) for y <yo} (5.6)
A1 —a(y—yo) {In (y—g0) Fin}] + Bly—yo) for y >y,

The relation A, = A, +na|d|2 for kUgZ 0, (5.7)

in which n denotes north of (i.e. y > y,), and s stands for south of (i.e. y < y,) the critical latitude
Yo, Was also obtained in M. M.

In slowly varying shear Ug and Ujg are small and consequently « is approximately equal to
(B/Uyg) so that propagation takes place on the y > y, side if U is increasing and on the side
y < y,if U, is decreasing (see figures 1-4). In a full wave treatment, however, & can attain positive
values even if Uy < 0. Indeed if Uy < 0 and Ug > B then « is positive (for positive f). Thus in a
full wave treatment propagation will occur on one side or the other depending on U and on
the gradient of the potential vorticity (i.e. on f— Uy) at the critical level. The influence of the
potential vorticity gradient on the wave in the vicinity of the R.w.c.l. has already been discussed-
by Geisler & Dickinson (1974). The foregoing discussion indicates that the W.K.B.]. solutions
near the R.w.c.l. cannot be expected to provide a reasonable (even) qualitative picture of the
real behaviour of the waves there.

However, the relation (5.7) provides a reasonable description of the state of affairs near the
R.w.c.L. Since || is a constant to leading order, near & = 0, the jump in & represents a jump
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both in the northward flux of total wave energy /' and in the northward transfer of zonal
momentum. Depending on « and Uy the jump in F is either positive, in which case the R.w.c.L
will act as an energy emitter, or negative and then the R.w.c.l. will act as an energy absorber.
This result will be exploited in § 6 below to study the infludnce of the R.w.c.1. on the reflexion
and transmission (as well as on the stability) of planetary waves by a finite shear.

5.2. Gravity wave critical latitudes

In the vicinities of the critical latitudes at ®* = N2 we expand U about y,, where y. is any one
of the latitudes

U, = Uly,) = (0= N)/k. (5.8)
. — 1 _|_Iu2
We obtain ”+[ Vig Yo 4 4 ] =0, 5.9
' v 4 y—y. (Y-y.)* v (5:9)
in which 1 = SN U + (26— BU— FUD1 ) (4NT),
Vo= [2N(JUS+BU) FfU (kU2 + NU1/ (2T, U), (5.10)
§2 = N (460U D).
If we let ¢ =vi—ye), (5.11)
dzy Lok 3+4%,
then (5.9) takes the form ac + [—Z+Z+—Z2——} ¥=0, (5.12)
in which Kk =7y, Y1t (5.13)

Thus y({) satisfies Whittaker’s equation the solutions of which are

M, 1,(§) = e ¥EHM(F +ip—x, 1+ 2ip, §),}
m, l/A(g) = e—ﬂ:g%“l‘U(% +i/L—K', 1+ 21/1', g):

where M and U are Kummer’s functions defined by (see Abramowitz & Stegun 1965, p. 505)

(5.14)

M) = 1484 @28 (@aL"

b (5)y2! (6),n! =7 (5.15)
o M(a, b, ) L M(14+a—b,2-6,0) '
Ula, b,8) = sin (7b) {F(1+a—b) T'(b) -¢ I'(a) I'(2—b) ;
with (@), =ala+1)(a+2)...(a+n—1), ay=1. (5.16)

Now equation (5.11) is the same as that studied by Jones (1968) for the classical gravity wave
critical level. A property of (5.12) is that if M, ,, and W, ; , are solutions so are M, _;, and W, _;,.
Following Jones (1968) ; Eltayeb & McKenzie (1975) in their study on the gravity wave reflexion
by a shear layer assumed that the two solutions for 1({) were M, .;,. However, an investigation
of the asymptotic behaviour of M, .;, shows that they behave like

g for ¢ 0.

They therefore fail to represent the correct solution for |{| — 0 when x# = 0, because they are not
linearly independent, in which case a logarithmic singularity occurs in one of the solutions,
because M(a, b,§) = 1 for { = 0. However, the asymptotic properties of U(a, b,{) in the neigh-
bourhood of { = 0 exhibit a logarithmic singularity when # = 0. Since the solution must be
analytically continuous in p, the two independent solutions of (5.12) must then be chosen as
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M, ;, and W, ;. It should be pointed out, however, that provided x # 0, the behaviour of M, 1,
and W, ;, in the neighbourhood of { = 01is similar to that of M, 1;,, and therefore the main conclusions
obtained by Eltayeb & McKenzie (1975) for a thin shear layer for . # 0 hold good. The numerical
results by Jones (1968) may however require some adjustment when £ = 0.

Thus the legitimate solution of (5.12) is

¥ =4, M, 5,(8) + A W,,5,,(8). (5.17)

In the neighbourhood of y. this can be approximated by

Y= {Al@—yc)%“"+Bl<y—yc)*i*‘i" for u # 0,} (5.18)

(y—y)}[4,+B,In(y—y,)] for p=0.

The solution is therefore identical to that obtained for the classical gravity wave critical level in
which case the correct solutions on either side of the branch point y = y,, is well known (Booker
& Bretherton 1967; Baldwin & Roberts 1970). However, the matching of (5.18) is not germane
to the analysis below and it is essential to revert to the dependent variable p because the trans-
formations (2.22) and (2.25) are both singular at &% = N2. Now

e, _NYU
—9)¥ T g|20ckU ¥ (5.19)
X = (y—ye)*

so that

o= {A(y_ye)zi/z-;-B for u # O,} (5.20)

A+Bln(y—y.) for p=0.

The matching of p across y — y can be obtained by simulating an initial value problem in which
 is assumed to have a small negative imaginary part so that at a particular point the disturbance
grows with time (Miles 1961). As a result y —y, in (5.20) is replaced by y —y, —iw,/(kU.), where
0 = o, +iw. If

0 = arg (¥ 9. —iwi/kU;)a (5.21)
then tan 0 =———(“L)/LUC, (5.22)
(¥ —ye)

Asyincreases from values much less than y, to values much greater thany,, 0 increases continuously
from 0 to ¥ according to whether kU, 2 0. The correct solutions in the vicinity of y, can then
be written as

Aly.—y)3+ B f
s {_(ye yRe+ B for y <yc,}, (5.23)
Aly—ye)™+8B for y >y,
in which A = AeFern (5.24)
for 4 % 0; and ={A+Bln(yc—y) ‘ for y<y_c,} (5.25)
A+ B[ln (y—y,) Fin] for y > y,,
when g = 0.
Now we must express .27 in terms of the pressure p:
A = —‘““—21 z{lm(l’*ﬁ') —[$|*Im (ii/+ &)} (5.26)
|xI? 4] ko x

9 Vol. 208. A
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Straightforward calculations then yield

A = (AP = |B]Y) for y <y,

(5.27)
o = Tl exp (7 oma) - B for g > g
when m is real; A = l—f—yl—zIm (A*B) for y <y,
! (5.28)
o = 2 |2Im [A*Bexp (+2mnvi)] for y >y,
in which 2= —pu? (>0), (5.29)
fof imaginary m; and o = ! Im (A*B) for < Yo,
g Y | |2 Yy<VYe
“ x| Bl? (5.30)
* ki el I
o = 2 1|2Im (A*B) + la]? for y >y,

when m = 0. Note that the upper (lower) signs refer to kU, > (< )0.

The expressions (5.27)—(5.30) show the strong influence of m on the discontinuity in .27 at the
g.w.c.l. For real m the solution (B) is not affected by the presence of the critical latitude and
therefore represents the wave permitted by the valve behaviour to propagate across that latitude
while the (A) solution is attenuated across the same latitude. However, the invariant &7 is com-
posed of both solutions and it is not legitimate to view the two independent solutions 4 and B
individually in terms of 7. Thus the conclusion to be reached from (5.27)-(5.30) is that the
wave invariant & is discontinuous there. In order to determine whether energy is absorbed at
@ = + N or not we require additional information. Suppose 7 is real and non-zero and consider
the critical latitude at & = — N. By appealing to figures 3 and 4 we see that kU is positive or
negative if, respectively, the transmitted wave (by the valve-behaviour) has a positive or negative
group velocity in the y-direction (where positive and negative group velocity is away from, or
towards, the observer). If we realize that the B solution is the transmitted wave and therefore
the 4 solution has a group velocity opposite to that of the B solution and hence has the same
sign as kU, wee see that the negative sign in (5.27) is relevant. The same result holds for the
other critical latitude at @ = N. We then conclude that .o is always reduced across the g.w.c.l.
if m is real and non-zero.

To interpret the discontinuity of &7 in terms of energy flux and momentum transfer in the
northward direction we appeal to the expressions (4.3) and (4.5). For real values of m, |y| = 1
and F and M are (for a particular wave) proportional to &7 and hence both F and M are reduced
across the g.w.c.l. If m is imaginary, however, then

X12 = [y —5e|®, & = (im) FU, N?/g26, kU, (5.31)

and the energy flux and momentum transfer either approach zero or tend to infinity depending
on whether 4 is positive or negative at the g.w.c.l. concerned.

The g.w.c.L. in a rotating fluid is then different from the classical gravity wave critical level.
In addition to the valve behaviour we shall see in § 6 below that the present g.w.c.l. has a profound
effect on the reflectivity and stability of atmospheric waves.


http://rsta.royalsocietypublishing.org/

JA

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ATMOSPHERIC ROSSBY-GRAVITY WAVES 71

5.3. Gravity-inertial wave singularities
In the neighbourhood of @ = 0 the equation (2.26) can be approximated by
'ﬁ‘” _ % 2¢. —_ O’ (5.32)
(y—1m)
where y; stands for any of the four singularities occurring where @ = 0. The solution of (5.32)
which can be matched directly across y, because both y and % are continuous there is
_ {A2(y1—y)%+32(y1—y)‘% for y <y, }
+idy(y—y) £1By(y—y) 7t for y >y,

where the upper (lower) sign refers to £U’(y;) > ( <0). Direct evaluation of .7 using (4.1)
h
shows that of = 2Tm (4, BY)

(5.33)

on both sides of y, and hence & is continuous across every singularity occurring where @ = 0.

6. REFLEXION OF ROSSBY-GRAVITY WAVES BY A FINITE SHEAR LAYER

The study of reflexion of planetary waves by a vortex sheet in M.M. indicated that over-
reflexion is possible only if the waves are evanescent in the vertical direction so that they can
propagate eastward in phase for small values of the flow. When these conditions are satisfied the
over-reflecting régimes occur when a Rossby critical latitude is embedded inside the vortex
sheet. The vortex sheet treatment naturally neglects the presence of the critical latitude there
and taking into account the detailed analysis carried out by Eltayeb & McKenzie (1975) for the
gravity wave critical level in a Boussinesq (non-rotating) fluid one might expect, as is claimed
in M.M. that the results of the vortex sheet may provide a good approximation to the case of a
thin shear layer (in the sense that the wavelength of the oncoming wave is much longer than the
thickness of the shear, i.e. |kL| < 1). However, recent studies on other critical levels (El Sawi
& Eltayeb 1978; Eltayeb 1980) showed that whether the vortex sheet treatment will tally with
the thin shear layer or not depends very much on what type of critical level (or latitude) is
relevant. Even in the absence of critical levels the stability of a finite shear is known to be different
from that of the vortex sheet (see Blumen et al. 1975; Eltayeb 1980). It is therefore necessary
to examine the influence of the Rossby and gravity wave critical latitudes in the present context
on the reflectivity and transmissivity of the waves as well as on their stability.

Consider a finite shear layer of thickness L in an unbounded medium, as defined in § 2 above,
and suppose that the flow distribution is given by

Uy, y <0 (regionI),
U={U(y), 0<y<L (regionlII), (6.1)
Us, L <y (region III),

in which it is assumed that U(y) is continuous at both y = 0, L. The boundary conditions applic-
ableaty = 0, L are the continuity of both pressure p, and the northward component of velocity v;.

<P1> = 0, <1}1> =0 at y= 0,L, (6‘2)
9-2
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where the angle brackets denote the jump in the quantity within. By using (2.20) equation (6.2)
can be expressed in terms of the field variable p

(p) =0, <Ep/Q+B(N?*—&*)p'/Q) =0 at y=0,L (6.3)

Another form of the boundary conditions, which will be useful below, is
(py =0 at y=0,L (6.4)
{E+B(N2 =) (W [h+ X' [X)} iy [ Q)+ O(N?— &%) (hp/Q) = 0 at y=0,L, (6.5)

where we have used the continuity of U at y = 0, L.

Consider a wave, amplitude 7, incident on the shear layer (region II) from region I. It will
give rise to a reflected wave, amplitude |R|, in region I and a transmitted wave, amplitude | 7’|,
in region III. The solutions of (2.26) can then be written

Texp (in,y) + Rexp (—inyy) (region I),

V=1 4¥1(y) + 4 ¥2(y) (region II), (6.6)
T exp (ingy) (region III),
where ¥, and i, are the two linearly independent solutions of (2.26) in region II, and n,, n,
are given by ' (&3 —f2) (@2 + £2)
2 _— __ 2 __ 2 1/-2 3 —_ Ay 2 4
ni = k (m +IH )(Ng_@%) kﬂ(wz N) (‘A)iQi
R D2+ 2f%) mPfU3 N4
+/32(w%_N2)2( Q%f ) gg(é)r%—N2)2’ (67)
in which
Q= (N?=0}) (0} —f*) + B} fPUE N?/g?, & = w—kU; for i=1,3. (6.8)

Here 7, and n; must be chosen in such a way that the incident wave transports energy fowards
the layer while the reflected and transmitted waves transport energy away from the layer if both
n, and ny are real. Ifn,isimaginary then it must be chosen such thating < 0. n, is, by hypothesis,
real.
6.1. General considerations
Here we shall employ the wave-invariant 7 to deduce some general results for the reflexion
by a shear layer of arbitrary (finite) thickness, L, when U’ and U" are both continuous every-
where so that discontinuities in .7 can only be due to critical latitudes.
In region I the invariant, %7, is given by
L , Ay =m(|I]*=|R[?), (6.9)
while in region III it takes the form
oLy = Re(ng)| T2 (6.10)
In the absence of critical latitudes within the shear 27, = &7, and hence
|R|? = [T|*—[Re (ny) /mi] | T'[*. (6.11)

Thus over-reflexion can occur only if
- Re (ny) /n, < 0. (6.12)

If ng is imaginary, and the transmitted wave is evanescent in the northward direction, perfect
reflexion occurs. For real n; over-reflexion occurs for n;n; < 0. To identify the over-reflecting
régimes we inspect the wave normal curves in regions I and III (cf. figures 1-4). By using the
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notation of figure 15 and employing a superscript to denote the region, i.e. £{V refers to £, in
region I, the over-reflecting régimes can be located as follows:

(1) @? < f2 and m real
In a westerly flow increasing with latitude waves with eastward and westward phase propa-

gation can be over-reflected. (ia) If a wave is westward propagating and provided U is small
enough to make k4 real and U, is such that £ < £ then it will be over-reflected if £ lies in the

range max [k, (w— N)/U,] < k < min [k, kD]. (6.13)
(1b) If a wave is eastward propagating and, provided U, # 0, it will be over-reflected if £ satisfies
max [k, /U] < k < min[k®, (w0 + N)/U,]. (6.14)

It is noteworthy that the ovér-reﬂecting régime (ia) applies to the case studied in M.M. when
m is real. The fact that M.M. failed to predict it is because the assumption &2 <€ N2 made in
M.M. filtered out the possible transmitted (gravity) wave. Itis also to be noted that in both (ia)
and (i4) the incident wave is a Rossby wave (for which &2 € N?) while the transmitted wave is
a gravity wave (with @ ¥ N?). However, the régimes (ia) and (i4) are different in the sense
that while (ia) occurs only when the incident (and reflected) wave has a long wavelength the
régime (i4) can occur for both long and short wavelengths provided U; and U, are such that
kY > kD).
(ii) f? < w? < N2 and m real

(iie) In a westerly flow increasing in latitude a wave with eastward phase propagation can be
over-reflected. The over-reflecting régime here is given by (6.14).

(ii6) In an easterly flow increasing with latitude only westward propagating (in phase) waves
can be over-reflected. Provided |Uy| is large enough to make £{® > &% and provided s2 > 0 (cf.
(3.12)) then all waves with £ in the range

max [kD, w/U,] < k < k®, (6.15)
are over-reflected.

When one or more critical latitudes exist within the shear, .27 will be discontinuous at every
one of them. We shall now use the relations obtained for ./ near each critical latitude (cf. § 5)
to draw some general conclusions regarding R and 7.

If a Rossby wave critical latitude exists within the shear and no other critical latitudes are
present then we can use the relation (5.6) together with (6.9) and (6.10) to obtain

|R|? = [I|*~|T|*Re (ny) /ny + n|A|2sgn (k) /n, | Ug|, (6.16)
where a=al, (6.17)

(cf. (5.4)). Thus the presence of a R.w.c.l. will enhance over-reflexion if n, @sgn (k) > 0, other-
wise it will tend to oppose it. This indicates that the logarithmic derivative of the potential
vorticity (which equals f&) at the critical latitude has a strong influence on the reflexion of
Rossby waves by a finite shear (see Dickinson & Clare 1973).
 In the situations when a critical latitude at @2 = N? lies within the shear no simple relation
between R and 7 is obtainable for the general case. However, such situations will be studied in
detail below. The case when the limit L tends to zero is considered in the next subsection.
The above relations between the reflexion and transmission coefficients for smoothly varying
shear flows (in the sense that both U and its first two derivatives are continuous everywhere)
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can be used to deduce general results about the relations between over-reflecting and unstable
régimes. In the absence of critical latitudes the unstable modes must obey the relation

Re (m) |R|+Re (ng) | T2 = 0, (6.18)

so that if n, is real (imaginary) n; must also be real (imaginary). Although the system may
possess unstable modes for which 7, is imaginary the situation relevant to over-reflexion is
associated with real #,. Thus any mode of instability for which both n, and n, are real will yield
an infinite |R/I|, according to (2.11), i.e. resonant over-reflexion will occur. In this case if the
unstable mode is associated with a given set of the parameters (i.e. wave numbers, flow speeds,
etc.) then slight departure from these given values will give over-reflexion. Thus all unstable
modes associated with n,, n; real are accompanied by resonant over-reflexion. It should be
remarked here that these deductions apply to all types of smooth shear (of the velocity and /or
magnetic type) provided the conditions for the existence and continuity of the wave-invariant
are met.

However, the relations obtained above cannot provide information about whether over-
reflexion is possible in a stable shear. To clarify this interesting situation we shall study the
relatively simple case of a shear the thickness of which is much smaller than the zonal wavelength
of the incident wave (i.e. when £L < 1). Now for a flow U(y) to vary appreciably over the small
thickness L of the layer (assuming £ = O(1) it must depend on the scaled variable Y(=y/L),
and in general can be written in the form

Uly) = U, + U, F(Y), (6.19)
in which Uy = U,—U, F(0)=0, F(1)=1. (6.20)

It then follows that 0U/dy = O(L-') and hence it increases indefinitely as L approaches zero.
The profile (6.19) may then resemble a vortex sheet in this limit of vanishing layer thickness and
it is interesting to see how the results of the thin shear compare with those of the corresponding
vortex sheet. Even in this limit the general problem requires extensive numerical work and we
will therefore limit ourselves to the case of a linear shear in which case analytical results are
obtained for the full range of @/N. The influence of the R.w.c.l. is also found to depend on the
type of the profile F(Y) and to illustrate this we briefly discuss the general smooth profile in
§ 6.3 below.
6.2. The linear shear

Here F(Y) = Y and consequently the gradient of F is unity within the layer 0 < ¥ < 1. The

system (2.26), (2.27) and (6.5) reduces to

%J“ [5(%+ (;(jf%ﬁ( ;2__211;23#0(1;2)];7 =0, (6.21)
Y1¥(0—) = 8%(0+),
Ya¥r(1+) =3$(1—), .
Yi{— kY (0—) + Xy’ (0—)} = kX, ¥ (0+), :

Ya{— kY (14) + X' (14)} = RX ¥ (1),

where X=08/N, §=f/N, ¥ =(—fU/L}ty
i=(2-XDE, vy = (82— X3,
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a = BLEN/(kUY), 1 =fU?/g%
S=1+(LN/fU,) {X?—7X2/(X%2-1)}, (6.23)
and the terms O(L?) in (6.21) are nonsingular for any value of X.

The formulation of the problem in terms of the scaled frequency X simplifies the problem
considerably by reducing the number of parameters of the original problem because only the
ratios of the different frequencies are now relevant. Since the problem spans a wide variety of
frequencies ranging from high frequency gravity waves (X ~ 1) to low frequency planetary
waves (X € 8 € 1) we find it convenient to study the following three cases separately.

(i) |X] <1
This case includes the planetary waves discussed in M.M. The governing equation (6.21)
takes the simple form dzy o\ —
et (2 +)—()¢ =0 (6.24)

This equation immediately shows that the propagation properties of planetary waves using a
full wave treatment are very different from those in the W.K.B.J. treatment. Except in the
region |X| < O(|al) the solution of (6.24) is oscillatory. Assuming that @, > 0 we see that (since
a = O(L?) here) the solution is oscillatory within the shear except in a very thin region in the
neighbourhood of the R.w.c.l. Moreover, since o is positive (negative) for westerly (easterly)
flows if a R.w.c.L. lies within the shear then the region between £ = 0 and £ = £, in figure 1 is a
propagation region and no evanescence occurs there. For the easterly flow (figure 2) on the other
hand propagation occurs in the region 0 > k£ > K where K is slightly greater than £, and
evanescence occurs in the small interval K > £ > k., the thickness of which is O (|«|). However,
more interestingly, propagation in this last case also occurs in the region £ < k,, since both «
and X are negative there. Consequently the reflexion and transmission properties of the thin
shear can be expected to be very different from those of the vortex sheet. This will be made
clear below. ,

To illustrate the role of the R.w.c.l. we will study the two subcases (ia) shear free of critical
latitudes and (i) shear containing one R.w.c.l. separately.

(ia) Shear free of critical latitudes
By assuming that | X| > |«| the two independent solutions of (6.24) are
Vo= oxp (iXy2), V—exp(—iXy2), (6.25)
which represent two propagating waves one northward going and the other southward-going.
The use of (6.22) and (6.6) yields

1_2=A—?B’ T_ (1 E)é‘lexp ('%Xa’\/2)+exp (—%X3J2). (6.26)
I C+iD’ 1 1], exp (iX,4/2) +exp (—1X,4/2)
where 8 = %i = {_11_5/},};/\2/2__:?;5}/3(;8} exp (— 2iX3 V2),
4 =1— (1, +082) (75— 0y2) X, X, /8%,
B= (i Xy +i Xp) /840y,
C = —1—1iy iy X, X,/8%— 2X, X, — o, cot oy, N |
D = (i Xy +1iy Xy) /8 + 871y +7i5) X, Xy /2 COE 0, (6.27)
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in which oy =2 (X, —X;), 75 =ny4/k (6.28)
If both X; and X; are small compared to ¢ (i.e. the case studied in M. M. for the vortex sheet) then

R dtano;

1720 X, + 5 Xs)’ (6.29)
2
so that ‘? ~ 0% tan?oy |y Xy +75 X5 2 < 1, (6.30)
since 62 € 1 and 7, and 73 have the same sign if both are real. If, on the other hand, X; ; = 0(J)
then RI2 St p n X X2
2| ~ Ltan? 0 ~Mnydy4ds
’I ~ }tan 0‘1[1+( ﬁ1X1+ﬁ3X3)]<<1 (6.31)
iy R 1iane g [ (O2H7X:)2 (1 +ﬁ%X%/32)]
for real 725; and ‘1 ‘ ~ }tan o‘l[ 7 X1 X1 <1, (6.32)

for imaginary 7,( = i%, 7 > 0). In all these cases the reflexion coefficient is directly proportional
to the jump (|Uj]) in the flow speed across the layer and since this, by hypothesis, is small no
over-reflexion is possible. Furthermore in contrast to the vortex sheet treatment no perfect
reflexion is possible even when 7, is imaginary the reason being that the wave propagates all the
way across the shear layer and becomes evanescent only in region III. In this way energy is
transmitted to the near end of region III although it decays very rapidly as y increases from L.

(ib) Shear containing an R.w.c.l.

When X = 0 lies within the layer (6.24) must be solved in its entirety. It transpires, however,
that it can be transformed into Whittaker’s equation and the two solutions are simply

Yy =eHEZM(1—k,2,2), Yy=e¥ZU(1~k,2,2Z), (6.33)
where , Z = 2iX2, «k=ia/(164/2) (6.34)

and M and U are Kummer’s functions defined in (5.15) above. Thus for small values of Z
appropriate here we have

1

U(l—«,2,Z) =5 =%)

{M(l —k,2,Z)InZ

+ 3 £1;Klf—zr[szﬁ(l—/<+r)—<z5(1+r>—sz5(2+r>}

r=0 (2)7'7!

1

a0z

M(1—«,0,Z), (6.35)

in which I' is the usual gamma function and

$(a) = I"(a)/I'(a), (6.36)

the accent denoting differentiation with respect to the argument. The notations M(a, b, Z) and
(x)r are defined in (5.15) and (5.16) above. It should be pointed out here that an investigation
of the asymptotic behaviour of the functions M and U for | X| > |«| matches uniformly with the
solution (6.25), as would be expected.
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The application of the boundary conditions (6.22) to the solution (6.33) and (6.6), omitting
the lengthy but straightforward manipulations, yields the following expressions for the reflexion
and transmission coefficients

R A+iB T ( R) (6.37)

1=cri 1-°\'"1)

where .
a =7 75{y (1 +27,) + (i, X3 — 1) In (X, /X)),
A = (1479 (147 In | X,/ X,) + Xy — T3 enfin (1 478) T+ 71 +7) Tl
B = —{n,(1+78) X, + (1 +73) Xo}In | X1/ Xo| +{m 73— (1 +78) (1+273) /J2} X,
+{ =7+ (1+70) (1 +275)/y2} Xy — en(L+78) (1 +7), (6.38)
C=—(1+7%) (1 +75) In | X,/ X;| — 27375 =73 =73 — en{in (1 +78) Xy — i3 (1 +7%) Xy},
= —{m(1+75) X, —7,(1 +7%) A_/va}h_l_|Xl/‘Xv3| +H{m Vi + (1L+75) (1+27%) /y2} X,
— {7+ (1478 (1+273)/y2} Xy + en(1+78) (1 +7),
in which Vs = Y13/0 Xz =X;4/8 (6.39)

and vy is Euler’s constant v~ 0.57721. (6.40)

The quantity e is a measure of the phase jump at the critical latitude and takes the values 1, — 1
if kU, 2 0 respectively (assuming that X; > 0 and X; < 0).

If | X5 < || so that Uy is close to U, then |X;/X;| > 1 and the expressions (6.37) can be sim-
plified considerably to become

RJ? 2(1+%%)

- ~1— — 6.41
7 [T +70% + 7 X3 In | %,/ %] (6.41)
I {In|X3/X|}*  [(1+7?%)2+73 X3]?

Thus the wave is almost perfectly reflected, although |R/I| is always slightly less than unity.
The transmitted wave has a very small amplitude and propagates almost zonally (because
|ng| > |k|). For larger values of | X;| the expressions (6.37) must be calculated numerically. A
sample of the results is given in figure 16. For comparison reasons the reflexion and transmission
coefficients (as well as the stability) of the corresponding vortex sheet (see equations (36)—(39)
in M.M.) are also studied in detail numerically and a comparison example is included infigure
17. It is found that both the linear shear and the vortex sheet are stable to all linear disturbances
of the normal mode type. However, the reflexion and transmission coeflicients are drastically
different in the two situations. This is due to two factors. First the presence of the critical latitude
can lead to energy emission. However, because of the small value of « for the linear shear (but
see § 6.3 below) energy emission is superceded by the second factor due to the strong interaction
between the wave and mean flow. Of course both these mechanisms are absent in the vortex
sheet treatment. Consequently over-reflexion in the case of the vortex sheet is extremely weak
compared with that due to the thin shear even when the parameters in regions I and III are
the same in both cases. A typical comparison is made in figure 17.
Before we conclude this case we may note that we have used the notation

‘ B =B/H; x = ¥m*+ (4H*)7}/k
in figures 16 and 17.

10 Vol. 2g8. A
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Ficure 16 Some representative samples of the reflexion and transmission coefficients {R/1| and | T/I| for planetary
waves when a R.w.c.l. lies within the shear (see case (i) of § 6.2) drawn as functions of — X, for various values
of B and x. Curves starting with values below 0.4 on the right correspond to | T/I| and the others to |R/I|.
(a) Westerly flow for which X; = 0.25, ¥ = —19.0 and § = 0.1, 0.5, 1.0 as marked. (b) Westerly flow for which
X, =0.5,8=0.1and ¥ = —19.0, —11.0, — 3.0 as marked. (c) Easterly flow for which X, = 0.25, ¥ = —19.0
and § = —0.1, — 1.0. (d) Easterly flow for which X, = 0.5, f = 0.1 and x = —19.0, — 3.0, — 1.0.
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i) 0 < |X| <1
In this range of X (6.21) assumes the form

&y 2§
v A e oiall (6.43)
and upon making the transformation
{=1-X? (6.44)
27 7
we find that it becomes {1-9 d—g’ - %é’d—yg +3y = 0. (6.45)

0 | I 0 I
001 021 041 061 081 001 021 041 061 081
X, >
Ficure 17. Comparison of the results for the shear and the corresponding vortex sheet for planetary waves when
a critical latitude lies within the shear. () The reflexion and transmission coefficients for the shear (continuous
curves) and the vortex sheet (discontinuous curves) against —X; for §= 0.1, y =—15.0 and X; = 0.5in a
westerly increasing with latitude. () The reflexion coefficients (R) and transmission coefficients (7°) in an
easterly when X, = 0.1, # = — 1.0 for x = 1.0 (continuous curves) and ¥ = 9 (discontinuous ones). The vortex
sheet results are also included: — ——, the reflexion coefficient of unity; 7" = 0.

This is the hypergeometric equation and the two independent solutions can be taken as

Yy = Fla,b;3;1-0), '
in which a=—3(1-45), b=—}1+45), (6.47)
and Fa,b;c;%) = 3 (@), () 2/{(c)nnl}, (6.48)

n_

where the notation (a),, etc., is defined in (5.16) above.
10-2
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Now straightforward manipulations yield

1_3 [(i7, X, — 1) U (X)) — BX (X)) +(iﬁ1X 1) E (X1) _7:21X1?é(X1) (6.49)

T [(iny X, +1) Yy (X)) +73 X, 1 (X0)] 61+ (i Xy +1) ¥ra(X0) + 73 X Y5 Xy)

T _ (% s [, 71 (Xy) +s(X5)] 6.50

IO v aar it (650
e 5, = FXYACE,) =7y £, 1) () 651

—VE X, (Xy) + (i Xy — 1) ¥ry(X,)’

and the accent denotes differentiation with respect to X.

01 02 03 04 05 10 10 20 30 40

FiGure 18. The reflexion (R) and transmission (") coefficients versus X, for case (i) of § 6.2 drawn
for # = 0.5, ¢ = 0.01, X, = — 0.1, x = 0.1. The curves are little changed by variations in f, x or X,.

Computations of the normal modes equation
[ Xy + 1) Yy (Xy) +73 X0 Y4 (X0)] 0 + (i1 Xy + 1) o (X) + 7 Xy Y3(Xy) = 0, (6.52)

for the range of X relevant to this case showed that the system is stable for all linear disturbances
of the normal mode type. Evaluation of the reflexion coefficient (6.49) showed that over-reflexion
is in general possible if 7 is real but it is extremely weak. Indeed the highest possible value of
|R/I| exceeded unity only by a few per cent (see figure 18). Furthermore |R/I| is exactly unity
if ng is imaginary although |7°/I| does not vanish. This can be deduced directly from (6.49)—
(6.51). Since the transmitted wave is evanescent we let

ng=in (n > 0), (6.53)
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the choice of the sign of n being dictated by the radiation condition. Thus 4, is real and therefore
R/I| takes the form i

|R/I] R _ A+1].3’ (6.54)

I —A4+iB

where A = 0,[Y (X)) +73 X Y1 (X)] + V(X)) +73 X, %é(Xﬂ,} (6.55)
B =7, X,[8, Y1 (Xy) + Yo (XY)].

Thus |R/I| =1, (6.56)

TP |73 4B® BW(X)—HT(X)T
and = =15 [ =l IR () 6.57
I V31 (42 + B%) 18, ¥, (X)) + Yo (X) ( :

It may be noted here that this case corresponds to the situation in which resonant over-
reflexion was predicted for smoothly varying shear flows for layers of arbitrary thickness, and the
fact that the present system is stable (and over-reflexion is practically non-existent) is mainly
due to partial reflexion at the lower ‘knee’ of the flow profile (at y = 0), which reduces the
intensity of the wave (particularly for the relatively high frequencies of this case) before it
reaches the shear within the layer. ’

(ii) |X| =~ 1

When m is real and |X| takes values on either side of unity, the problem (6.21) in the limit
L —01is, to leading order, the same as that of the classical critical level for gravity waves provided
we define the Richardson number by % + #2. Without going into details the results obtained by
Eltayeb & McKenzie (1975) for Richardson numbers slightly greater than 4 hold good here.
Thus over-reflexion is not possible and the system is stable. Moreover, absorption of wave
energy takes place at the g.w.c.l. even in the limit of vanishing thickness. It can then be deduced
that the gravity wave critical latitude in a rotating fluid (occurring where the intrinsic frequency
& matches the Brunt-Viisalla frequency N) is different, at least for thin shear layers, from that
present in non-rotating fluids (which occurs where the intrinsic frequency vanishes). It may
also be pointed out that, in contrast to the findings in M.M. (see p. 140), the g.w.c.l. is also
different from the R.w.c.l. discussed above.

6.3. Smooth shear profiles

The example of the linear shear discussed in the preceding subsection does not satisfy the
conditions pertaining to the general results obtained in § 6.1 because of the discontinuity in U’
at the edges of the shear layer. In order to emphasize the existence of two types of over-reflexion
and to stress the importance of the profile of U in effecting either of these two types of over-
reflecting régimes we will study the case of a general profile of U in the case when a R.w.c.l.
exists within the layer. We will also assume that the layer is so thin that the solution in the
neighbourhood of the critical latitude represents a reasonable approximation to the solution in
the whole layer. Now assuming that F', # 0 and noting that L < 1, we see that

o =fFe/Uy(Fo)*+O0(L) - (6:58)
and hence the region influenced by the R.w.c.l. (which occurs at X = 0) is much larger than in
the case of the linear shear (where F;, = 0). The solution within the shear then takes the form
(5.6) with y replaced by Y. The associated boundary conditions here demand that both ¢ and
¥’ are continuous at ¥ = 0, 1. Consequently

R ~
= 1+7, (6.09)

R _i(nytma)—(ing+ay) T
I i(nyFna)+ (ing+ay)” 1
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in which vy=In(-1+Y;1), (6.60)

with the subscript ¢ denoting values at the R.w.c.l., measures the position of the critical latitude
relative to the centre of the layer. Now the assumption that the layer is very thin together with
the hypothesis that z, is real demand that the present case is relevant only to the case of a westerly
decreasing with latitude or an easterly increasing with latitude. In either case 7 is imaginary
and has the form (6.53). Thus

R

i

2 2nn,
=1t 2°
(n, ¥ n@)® + (n—y2)

(6.61)

and over-reflexion will take place if N
an, 2 0 for kUL = 0. (6.62)

Remembering that U, = U;— U, and sgn (U}) = sgn (U, F,,) and realizing that kn, > 0 for the
present case, we can write the condition for the occurrence of over-reflexion as

sgn(fF,F;) > 0. (6.63)

0

U,

Ficure 19. A schematic representation of the over-reflexion of § 6.3.

Thus over-reflexion can occur if Fy, > 0 for the westerly and if F}; < 0 for the easterly, assuming
f > 0. Moreover, an analysis of the normal modes equation

i(n,Frna)+ay—n=0 (6.64)
shows that the only neutral mode of stability is given by

_o_2?U+yU; (Us—-Uy) k2
c=r= P (@ 7Y (1+x) (6.65)

and |R/I| is infinite when (6.65) is satisfied.
Now |R/I|? = 142m |an,|sgn(fFFg)/{(n, F na)?+ (n—ya)?} (6.66)

and for given £, w, ¥, U; and F over-reflexion takes place even if (6.65) is not obeyed provided
U,is not too far from the value, U, satisfying (6.65) and as Usincreases to Uthe reflexion coefficient
becomes infinite and resonance occurs. This is confirmed by the expression

T

I

2 4n2
 (mtma)?+ (n—ay)® (6.67)
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for the transmission coefficient which also tends to infinity as U, takes the value U. This situation
is represented schematically in figure 19 to facilitate comparison with the other type of over-
reflexion discussed in § 6.2 above.

7. CONCLUSIONS

The study of the local dispersion relation (3.2) for subacoustic flow speeds showed that propa-
gation of gravity waves on a beta-plane is possible in the presence of latitudinally sheared
zonal flows only if the waves propagate vertically, i.e. only if m is real. If these waves are evan-
escent in the vertical direction they will also be evanescent in the latitudinal direction and there-
fore they will, if excited, propagate eastward in a thin region surrounding the latitude on which
the source is situated. In this way they will not be efficient in transferring energy and momentum
in latitudinal or vertical directions. However, if they are propagating vertically then they can
also propagate latitudinally and can transfer energy and momentum in both directions (see
§ 4). Moreover, their critical latitudes are very different from the classical critical levels of
Booker & Bretherton (1967). Although both total wave energy flux and momentum transferred
in the northward direction experience a negative jump across each critical latitude, the attenu-
ation factors for the two waves there (one northward-going and the other southward-going) is
not the same if the fluid is non-Boussinesq because the waves exhibit valve-like behaviour there
which allows one of the waves to cross the critical latitude unattenuated. The valve behaviour
at these critical latitudes is found to be responsible for the escape of gravity waves from regions
of high shear flow to those of low shear flow and thereby facilitate the ‘ coupling’ between high
and low frequency waves on a beta-plane.

In § 6 the reflexion and transmission of Rossby-gravity waves by a finite latitudinal shear has
been investigated. It is shown that the presence of a Rossby wave critical latitude (occurring
where @ = 0) has a profound effect on the reflectivity, transmissivity and stability of planetary
waves in the presence of a finite shear layer. The influence of this type of critical latitude on the
intensity of the wave is found to be measured by the parameter a which is equal to the product
of the ratio of the planetary vorticity to the basic flow vorticity and the logarithmic derivative of
the potential vorticity at the critical latitude. All three properties are found to be strongly
influenced by the magnitude and sign of «. In the linear shear the potential vorticity gradient is
the same as the planetary vorticity gradient and a < 0 for f > 0. Here over-reflexion is possible
but instability is absent. However, in the case of nonlinear shear (and because the shear is thin)
the gradient of potential vorticity has the same magnitude (but different sign) as the gradient
of the shear flow vorticity and the sign of @ depends on the sign of the potential vorticity (as
measured by the curvature of the flow F). Over-reflexion depends on the sign of the product
of the flow vorticity, the planetary vorticity and the potential vorticity gradient as measured
on the critical latitude (cf. (6.63). If the product is positive over-reflexion takes place but the
system is unstable, and in contrast to the linear shear, over-reflexion here is resonant.

The influence of the gravity wave critical latitude on a beta-plane on the reflectivity and
stability of the shear is found to be different from that of the classical gravity wave critical level.
The g.w.c.l. is always associated with wave energy absorbtion even in the limit of vanishing
thickness. The reason for this can be traced down to the fact that the equivalent Richardson
number approaches } as the thickness of the layer tends to vanish. In this respect the g.w.c.i. is
similar to the critical level of hydromagnetic-gravity waves (Eltayeb 1980).
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The reflectivity and transmissivity properties of thin shear layers have generally been believed
to be adequately represented by the corresponding vortex sheet. The above analysis, however,
shows marked disagreement between the two cases and it is of interest to examine the reasons
for the wide disagreement located here, bearing in mind the close agreement obtained by
Eltayeb & McKenzie (1975) for gravity waves incident on a linear shear in a Boussinesq non-
rotating fluid. After studying a number of other situations (see Eltayeb 1977, 1980; El Sawi &
Eltayeb 1978) it seems that whether the thin shear and the corresponding vortex sheet will yield
the same results or not depends on the equivalent Richardson number, Ry, of the system and
on the flow profile. Ry, is « for R.w.c.l., } + x? for the g.w.c.l. and R for the classical gravity wave
critical level. The significance of Ry is that it measures the jump in the intensity of the wave
(as measured by &) across the singularity. If Ry approaches zero in the limit L -0, as it does
for the case Ry = Ri then the influence of the critical latitude (or level) is negligible in this limit
and the thin shear and vortex (or current-vortex) sheet will exhibit similar results. However, if
Ry tends to a finite non-zero value as L approaches zero the shear and sheet can be expected to
lead to different reflectivity and stability properties. It is also found that discontinuities in the
flow at the edges of a shear layer have the effect of reducing the interaction between wave and
shear. The case of discontinuous shear (see § 6.2) tends to yield results which are, to leading
order, similar to those of the vortex sheet. However, the smooth shear is associated with different
reflectivity and stability properties (see § 6.3 above and Eltayeb 1980). It may then be concluded
that only those shear layers of the linear type for which the equivalent Richardson number
tends to zero as the thickness of the shear approaches zero may be expected to exhibit results
similar to the vortex and /or current sheet.

The search for over-reflecting régimes in the absence of critical latitudes within the shear
layer revealed that such régimes are present if the vertical wavenumber, m, is real (and gravity
waves are present). Here over-reflexion occurs provided the incident and transmitted waves are
of different types, i.e. one is a Rossby wave (slightly modified by gravity) and the other is a gravity
wave (slightly modified by rotation). However, such régimes are found to be associated with the
presence of instability and hence over-reflexion here is resonant. By taking into account the
various situations in which over-reflexion is predicted in the absence of critfcal levels (Eltayeb
1977; El Sawi & Eltayeb 1978, § 6 above) it may be conjectured that a pre-requisite condition
for the existence of over-reflexion in the absence of critical levels (or latitudes) is the existence of
hybrid wave-motions, i.e. systems in which at least two types of wave motions, which can exist
independently, are coupled together.
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